
Acting on information: Representing actions

that manipulate information

Topic: Representational Formalisms (Action)

Keith Golden

NASA Ames Research Center

M/S 269-2

Moffett Field, CA 94035-1000

kgolden @ptolemy, arc. n asa.gov

November 1, 1999

Abstract

Informationmanipulation isthe creationof new informationbased

on existinginformationsources.This paper discussesproblems that

arisewhen planning for information manipulation,and proposes a

novel actionrepresentation,calledADL[M, thataddressesthese prob-

lems,including:

• How to representinformationin a way sufficientto express the

effectsofactionsthatmodify theinformation.Ipresenta simple,

yet expressive,representationof informationgoals and effects

that generalizesearlierwork on representingsensingactions.

• How to conciselyrepresentactionsthat copy information,or

produce new informationthat isbased on existinginformation

sources.Ishow how thisisa generalizationoftheframe problem,

and present a solution based on ge,eragized ,_zme e._ects.

• How to generate a pipeline of information-processing commands

that will produce an output containing exactly the desired infor-

mation. I present a new approach to goal regression.

1 Introduction

There are many problem domains that consist largely of actions that manip-

ulate information. For example, image processing tasks consist of taking one

or more input images, transforming them in various ways, and writing the

result to one or more output files. Network administration also involves sub-

stantial information manipulation, such as backing up files, applying patches

to software, compiling and installing programs, modifying configuration files.

This is the sort of task that planner-based softbots 1 [4] were designed

for. However, the information manipulation problem is beyond the grasp of

current softbots. There has been considerable work on developing planners

for gathering information, but almost no work on planners for manipulating

information. That is not because manipulating information is unimportant,

but because representing actions that manipulate information is hard.

This work builds on experience with the Internet Softbot [4] and on cur-

rent efforts to build softbots for information manipulation tasks at NASA.

Years of building a domain theory for the Internet Softbot made clear the

representation language's strengths and weaknesses, which led to a number

of improvements, as discussed in [6, 8, 7]. One area where it has remained

weak, indeed where all action languages are weak, is representing the infor-

mation content of files. The copy action was never cleanly or accurately

represented, and we were unable to represent Unix pipes (which redirect the

output of one command to the input of another). Actions like tar (which

creates an archive of a collection of files) were out of the question.

This paper discusses the reasons why it is difficult to represent such ac-

tions in previous action languages, and presents a new language, ADLIM, that

addresses these problems. ADLIM stands for Action Description Language

for Information Manipulation. ADLIM is based on Pednault's AD5 [19], and

strongly influenced by SADL (Sensory _DL). [6] Whereas SADL focuses on

gathering information, ADLIM focuses on manipulating information.

1.1 Roadmap

Section 2 introduces the ADLIM action language, defining the semantics of

effects and goals in terms of the situation calculus. Section 3 discusses the

problem that occurs when information is copied, shows that this problem is

ISoftbot stands for software robot.

a generalization of the frame problem, and introducesa new kind of effect
to deal with it. Temporal projection is fundamental to planning. Section
4 discussestemporal projection in ADLtM, providing a sound and complete
goal regressionoperator. The full paper will also discussa new technique
called goalprogression, which ADLIM's unique representation allows. The full

paper will also discuss the relationship between information manipulation

and information gathering, show how the latter is handled in ADLIM, and

discuss how a planner can reason about the completeness of information

contained in a file, using Local Closed World reasoning [3]. Section 5 provides

a brief example of ADLIM actions and Section 6 discusses related work.

2 Information manipulation in ADLIM

Since the goal of ADLIM is to represent actions that process data inputs and

produce data outputs, inputs and outputs are explicitly declared in action

descriptions. Every variable is declared as an input, output, parameter or

quantified variable. Inputs and outputs are distinct from other variables in

that an input is not guaranteed to exist after the action is executed, and an

output does not exist before the action is executed.

An action that has no inputs and one or more outputs is called an infor-

mation source. An action that has one or more inputs and no outputs is an

information sink. An action that has one or more inputs and one or more

outputs is an information filter. An information filter processes the inputs,

producing the outputs. Contrary to the behavior of a physical filter, it does

not necessarily remove anything from the input, and may add something or

change it completely.

2.1 Background: The Situation Calculus

I define the semantics of ADLIM expressions by mapping them into the situ-

ation calculus [16], a first-order logic used to describe changes to the world

resulting from the execution of actions. A situation is a state of the world at

a given time. A fluent is a function or proposition whose value may change

over time. To indicate the value of fluent _(x) in situation s, I will write

qa(x, s). At any one time, there is some situation s that holds at that time,

and for any boolean fluent _a(x), either qa(x, s) or --,_o(x, s). Thus, the set

of ground facts holding in situation s comprises a complete logical theory.

However, if an agent has incomplete information about the world, it can-
not know what the actual situation is, sincethat would require knowing the
value of every fluent. Thus, there aremany other situations that might hold
instead. Following [21] and many others, I representthesesituations using
the predicate K. K(s', s) is true if and only if it is consistent with an agent's

knowledge in situation s to believe that the actual situation might be s'.

All changes to the world are assumed to be the result of executing ac-

tions. The special function do is used to represent these changes, do(a, s)

returns the situation that results from executing action a in situation s.

{a}_ represent a sequence of actions at; as;... ;a_. do({a}'_, s) is equiva-

lent to do(a_, do(a__l,...do(at, s))), i.e., the result of executing the entire

sequence, starting in situation s. So represents the initial situation.

Since ADLIM expressions are not themselves objects in the situation cal-

culus, I introduce the following predicate, which takes ADLIM expressions

as arguments. HOLDS(E, {a}_', s) means that the ADLIM expression E be-

comes true as a result of executing action sequence {a}_' from situation s.

2.2 Effects

UWL [5] and SADL represent information-producing actions using the anno-

tation observe. For example, to represent that executing the action ls /b£n

reveals the name of every file in/bin, the SADL encoding would be:

Vf 3n when (in.dir(f, /bin)) observe(name(f, n))

However, the encoding using the observe annotation does not actually rep-

resent the effects of ls, but rather the combination of ls with a program

to interpret its output and produce a set of knowledge base updates. Such

a program is called a un'apper. Since a .filter works on the syntactic output

of a program, not the semantic interpretation, using observe throws away

vital information that a planner needs to successfully create a data pipeline.

Instead, I divide conditions that can be sensed into two categories:

• simple observables are functions or relations whose value is inde-

pendent of the situation in which they are evaluated. An example of a

simple observable is the relation contains("foobar", "foo"). It is easily

answerable by examining only the syntactic representation of "foobar"

and "foo". For every simple observable, there is a function that returns

4

its value(if all argumentsarebound), or providesadditional constraints
for its arguments(if someargumentsarebound). Formally, _P is a sim-

ple observable if for any variable substitution 8, either _P_ or _ is

true in all situations:

contingent facts are functions or relations whose value depends on

the situation. For example, the relation in.dir(foo,/bin), which means

the file foo is in the directory/bin, will be true in some situations and

false in others. A sensing action can be described using conditional

effects, where the antecedent refers to the situation in which the action

is executed, described using contingent facts, and the consequent refers

to the contents of the output, described using simple observables. For

example, the effect of ls discussed above would be represented as

Vf (parent.dir(f) = /bin) --_contains-line(name(f), out)

This translates to "For each file in directory/bin, there is a line

in the output that is equal to the name of the file. ''2 The --+ is

used instead of when to indicate a conditional effect. The reason

for this notation will become clear in Section 2.3.

Nested expressions like contains-line (name (f), out) in the above example are

nice notationally but awkward for a planner to work with. They can be de-

composed by introducing additional variables. For example, if n =name(f),

then the above can be rewritten as contains-line(n,out). However, it is nec-

essary to decide which side of the ---, the n =name(f) belongs on. That is,

does n refer to the name of f before the action is executed or after? I adopt

the simple rule that, by default, sub-expressions like name(f) always refer to

the situation before the action is executed. The exceptions to this default

will be spelled out in the full version of this paper.

Effect Semantics

The semantics of effects is mostly straightforward. I will explain the seman-

tics by translation into the situation calculus. Let s. be the situation before

2This describes the "piped" version of Is (which is appropriate in this context), without

any flags. More complex versions of Is, such as ls -l, can also be easily represented.

5

the action a is executed and let sb be the situation that results from executing

action a in situation s_ (sb = do(a, s_)). Translation consists of converting

the -+ into an implication (=_) and specifying the situation that each expres-

sion refers to. Each fluent will acquire an additional argument referring to

the situation. For example, name(].) becomes name(]', s). Fluents left of

the ---+pertain to s_, and those on the right pertain to sb. For example, the

effect of is discussed above translates to

V],parent.dir(],, sa)=/bin A rL =name(]., sa) =_ cdntains-line(n, out, sb)

I sidestep the ramificationproblem by making the STRIPS assumption: Any

proposition that is not explicitlymade true or falseby an action remains

the same. The only exception isthat ifthe value of a function is changed,

itis not necessary to declare that the previous value no longer holds. For a

formalization of the STRIPS assumption in the situationcalculus,see [21].

Any effectcan be rewritten so that each consequent appears only once.

First,conjunction iseliminated in the consequent by replacingexpressions of

the form • _ qol A qa2 with (_ _ qol) A (_ --_ _2). Then effects of the form

_ qo and • -+ qo are combined into a single effect (_V_) _ qo. Disjunction

is only allowed in the antecedent of effects, so after this transformation,

the effects can be specified completely by listing the preconditions of each

(possibly quantified) literal qa or --,qo. For each literal _o, let 7r(a) be the

condition required for action a to make _o true, and let 7F(a) be the condition

needed to make qo false. If a does not affect qo, then 7r and 7 f are both false.

Since the effects of a must be consistent, _'7 r v _,f. For simplicity, I assume

in this discussion that no effects cause qa to become unknown, but see [7] to

see how that is handled. It then follows that

HO LDS('y r _ _o,a, s) =# .('),T (s) =_ _(do(a, s)))

2.3 Goals

Information manipulation goals, like effects, must be explicit. Consider the

goal of outputting the result of a query to a file. Merely ensuring that the file

contains the information is not sufficient. For example, a list of file names

should not be mixed up with a list of userids, since it may be difficult to tell

which is which. Furthermore, if the file is to be read by another program,

there will be exact formatting requirements.

6

Supposemy goal is to to producea killfile, which is a list of email ad-
dressesthat [don't want to receiveemail from, eachona separateline. Let's
say [don't want to receiveemail from anyonewho has sent me a message
containing the string "MAKEMONEYFAST."I might expressthis goal as:

Veto ernail-received(em) A

contains(subject(era), "MAKE MONEY FAST")

--_ contains-line(sender(era), killfile)

This has the same form as the conditionaleffectsdiscussed inSection 2.2,but

the meaning isslightlydifferent.Whereas, in effects,the statement A --_B

indicates that ifA istrue before the action isexecuted then B willbe true

after the action is executed, in goals it means that ifA is true before the

plan isexecuted, then B must be true afterthe plan isexecuted. Thus, A is

similar to an initiallygoal in SADL and B issimilarto a satisfy goal [6].

As was argued in [8,6], information goals are inherently temporal. It

doesn't make sense to ask about the value a fluentwithout specifying at

what time the value of the fuent is to be sampled (and at what time the

answer isdesired).This notation assumes information goals are of the form

'q'ellme ASAP the value that these fluentshave now" or, more generally,

"Act ASAP on the current value thisexpression."

Goal Semantics

The structural similarity between goals and effects is not coincidental. The

semantics of a goal is equivalent to the semantics of an effect, with the ex-

ception that the temporal extent of a goal is the entire plan, rather than just

a single action• That is, st is replaced with So, the initial situation, and Sb,

is replaced with s,_ = do({a}?, So).

The --+ in goals represents implication between a formula in So and a
formula in s,,, but often bi-implication is the desired interpretation. For

example, consider the above example. Including the emall address of every

person I've received email from would satisfy the above goal, but is not at all

what I want. To address this problem, a strict interpretation can be indicated
• ¢_

by the notatmn--_. Using that notation, the above goal is equivalent to the

following expression in the situation calculus.

Vern, p ernail-received(em, so) A p = sender(era, So) ^

contains(subject(ern, So), "MAKE MONEY FAST")

¢_ contains-line(p, killfile, sn)

7

[n general,

HOLDS(--, {a}?,
HOLDS((_ --% @, {a}_', s0)

= ¢(s0) = e(do({a}i',s0)
-

3 A new frame problem

The representation of information filters presents a challenge. A filter creates

a new object, such as a text file, which is based on an existing object. Al-

though the input and output of a filter are distinct objects, they have much

in common. The output may be a copy of the input, with some (possibly mi-

nor) changes. For example, gzip, a compression utility, leaves all properties

of the file the same, with the small difference that the output is compressed

and the size is different. Explicitly representing all of the ways in which the

input and the output are the same would be cumbersome, since usually they

will be more similar than different. For example, if the input of gzip contains

a picture of the Martian rock named Yogi, then so does the output. If the

input contains the postscript version of this paper, then so does the output.

Listing all of these conditional effects explicitly would be impractical.

This is just a generalization of the frame problem, which is typically

solved by the STRIPS assumption. The STRIPS assumption is not adequate

to reF.resent the copying that occurs in filters, since the input and output are

distinct, and thus any propositions that refer to them will also be distinct.

What is needed is the ability to explicitly state that the output is identical

to the input unless stated otherwise. For example, in the case of gzip, one

should be able to declare that the size and compression of the file are different,

but in all other respects the files are identical. I refer to such declarations as

generalizedfTame effects: The effect frame(x, y) in an action a will be used to

mean that for any proposition p(x) that holds before the action is executed,

p(y) will hold afterward, unless p(y) is contradicted by another effect of the

action.

Formally, this representation can be described in terms of a second-order

logic. If R is the set of relations and F is the set of non-one-to-one functions,

then HOLDS(frame(x, y) , a, s)) is equivalent to

Vp • R [p(x, s) ¢e, p(y, do(a, s)) unless r F

AVf • F[f(x,s) -" f(y, do(a,s)) unless 3z(7_(_)=r(a,s))]

which translates to "everything that is true for x before executing a is true for

y afterward, unless a has some effect that specifies the value of the fluent in

question." From this point onward, [will use frame(x, y, a, s) as a shorthand

for HOLDS(frame(x, y), a, s)).

Note that one case has been left out. If f(z, s) = x, the frame declaration

will not result in f(z, do(a, s)) = y. There is a good reason for this. Since f

is a function, f(z) can only have one value at a given time. Making f(z) = y

will result in f(z) _ x, which is most likely unintended. The above definition

h:___,the advantage that the consequences of frame will be limited to the copy

that is being made. If the copy is a newly created entity and all effects

are limited to the copy, the value of previously true propositions will not be
affected.

One might imagine dispensing with the inputs and outputs and represent-

ing all actions as destructive. Then the STRIPS assumption would preserve

attributes of the files that don't change. This would require that all files

that need to be preserved be explicitly copied [2]. However, doing so merely

pushes the frame problem into the action copy(f1, f2), since for any pi'opo-

sition P(ft) that is true before the copy, P(f2) should be true afterward.

Furthermore, this approach is only applicable in cases where a single input

is mapped to a single output. It will not help when modeling the effects of

an action that generates mosaics (combining many images into one), since

many inputs are mapped to a single output.

4 Temporal projection

The structure of goals and effects has some interesting properties when it

comes to planning. Since the goal contains a part that refers to the initial

state and a part that refers to the final state, it is possible to simultaneously

apply regression and progression to the goal, effectively working on it in two

directions at once. Since the left side of the goal refers to the state of the

world that the agent is to obtain information about and the right side refers

to what is to be done with that information, there is no reason to assume that

working on one side or the other will result in a smaller branching factor. A

strategy such as least-cost flaw repair (LCFR) [10{ could be used to choose
at each iteration which side to work on.

Consider a goal of the form A _ C, and two actions, with effects A -+ B

and B _ C, respectively. Regressing the goal through the second action

results in a goal of the form A _ B. Regressing that through the first action

results in A --_ A. Progressing the goal through the first action results in

a goal of the form B -+ C. Progressing that through the second action

results in C -+ C. In general, a planner can apply a series of regression and

progression operators on the goal, until the left side implies the right side

(and vice versa, in the case of -+).

4.1 Successor state axiom

Following [18], I introduce a successor state axiom, which determines the next

state after executing action a, based on the previous state. First, I present

some useful definitions. Following [18], I define the enabling conditions Z_

and the preservation conditions H_ of _o. The enabling conditions follow

Pednault's definition, except that _o can also be enabled by frame effects.

a T F
Ev(y)(s) ¢* 7v(_)(a,s) V (3x(_o(x,s) A frame(y,x,a,s) A-,q,_(_)(a,s)))

a F 7v(y)E_,_(_)(s) ¢* 7_(y)(a,s) V (3z(--,_p(x,s) A frame(y,x,a,s) A--, 7" (a,'s)))

A condition is preserved as long as its negation is not enabled.

The Successor State Axiom states that if condition _o is true after exe-

cuting action a, either a caused _o to become true, or _ was true originally,

and a didn't cause _ to become false.

Theorem 4.1 Successor State Axiom

 (aoCa, s)) ¢, v Art (s)

4.2 Regression

Goal regression is used to determine what must be true prior to executing a

sequence of actions to ensure that a given condition is true afterward. That

is, if F is to be true in situation do({a}_, s) , what must hold in situation s?

First, I define regression of the empty plan, {}. Since the temporal extent

is zero, regression succeeds iff the left side entails the right side

%(_-*¢) - (_¢)

l0

Regressionof a non-emptyplan consistsof successivelyregressingeachaction,
starting with the last.

= R,=,(R,,,(...R,.,(F)))

Conjunction, disjunction quantification and negation are handled in the usual

manner. Namely, R (rl^r2) = R.(FI)^R,(r2), R.(rtvr) = R.(Ft)vR,(F2),

R,(--,F) = _R,(F), R,(VzF) = VxR,(F) and R,(3xF) = _zR,(F).

Given a goal of the form @ --+ @, we regress the @ and leave the @ alone

(since it already refers to the initial situation).

R.(@ _ _) = @ -4 R,(_)

Finally, to regress a single literal, _: By the successor state axiom, _a is true if

it the action makes it true, or if it was true previously and the action doesn't

make it false.

R,(_p)= (Z_ V ((pA l'I$))

Regression in ADLIM is both sound and complete.

Theorem 4.2 Soundness and Completeness of Goal Regression

Let a be an axiomatization of the domain theory and the initial state.

Then a _ (HOLDS(R(.}r(F), {},So) ¢, HOLDS(F, {a}_,s0))

There is insufficient space in this extended abstract to discuss progression of

goals, but there will be a discussion of it in the full paper.

5 Example
o

The power of this representation can be seenwhen composing information-

proce_ing actions together. For example, in Unix, a common way of copying

whole directory hierarchies is to create an archive of the files and execute a

remote command to extract the archive on a target machine. This can be

accomplished with a single command-line instruction, using the pipe operator

"l" to redirect the output of one command into the input of the next:

tar cf - I rsh target-host '(cd target-dir; tar xf -)'

The tarc action createsa tarlilefrom the contents ofa directory,descend-

ing the directory hierarchy recursively.To avoid representingthe recursion

11

explicitly, tarc does not refer to directories, but to pathnames. A file is (re-

cursively) contained within a directory if the pathname of the directory is a

prefix of its own pathname. The parent.directory function can also be defined

in terms of pathname. The output of tarc is a newly-created tarfile, contain-

ing a file-record for each file reachable from the directory. Each file-record

is identical to the original file, except that it has only a relative pathname,

and it is not located on any machine.

action tarc (path dp, exec-context ec)

output : tarfile out

effect: V file(/),path(Ip)

(pathname(/) -- concat(pd, lp) A

host-loc(,f) = currenthost(ec))

-+ 3 file-record(/r)

frame(/, /r)Ahost-loc(/r) = nil

contains (out, /r) A

pathname(/r) = lp

exec: "tar cf - dp"

The tarz action extracts information from the tarfile and creates the cor-

responding files and directories in a new location. For each file-record in

the tarfile, a new file is created, identical to the file-record, except that it

has a new pathname and host location. Although these action descriptions

omit some minor details, they are essentially complete. The key is the frame

effects, which stand for a huge number of statements.

action tarx (path dp, exec-context ec)

input : tarfile in

precond: pathname(currentdirectory(e_.)) = dp

effect: V file-record(/r) ,path(/p)

(pathname(/r) =" lp A contains(in, /r))

-_ 3 file(/)
frame(/r,/) A

host-locC.f) = currenthost(ec) A

pathname(f) = concat(dp, lp)

exec: "tar xf -"

The fullpaper willpresent a detailedexample of how a planner can reason

about thisaction sequence, using the temporal projectionoperators defined

in Section 4.

12

6 Conclusion and related work

[presented ADLIM, an action description language for information manipu-

lation, which is unique in the ability to concisely represent actions that copy

all or part of an input to an output. Representing such actions presents a

generalization of the frame problem, which has not been noted before in the

planning literature. I presented a solution, using frame effects, and defined

the semantics of the language in terms of the situation calculus.

Collage [13] and MvP [2] both automate image manipulation tasks, a

motivating problem for ADLIM. However, they don't focus on accurately

modeling information manipulation. MVP requires actions to destructively

modify their inputs, relying on the STRIPS assumption to preserve properties

not listed in the action's effeCtS. Collage relies solely on abstract action

decomposition and thus does not need a precise causal theory of the actions.

Representing actions that manipulate information is related to represent-

ing sensing actions. Moore [17] devised a theory of knowledge and action,

based on a variant of the situation calculus with possible-worlds semantics,

which included an analysis of information-providing effects. I opt for a less ex-

pressive language, for the sake of tractability. Scherl and Levesque [21] built

on 5,[oore's work, providing a solution to the frame problem and knowledge-

producing actions. The semantics provided for ADLIM closely follows their

formalization. Son and Baral [22] offer a simpler formalization.

ADLIM follows UWL [5] and SADL [6] in providing an action language

suitable for softbots, but opts for a more general representation of sensing

actions. ADLIM, like SADL, extends ADL [19], and adopts limited temporal

quantification for information goals. However, whereas SADL'S sensing ac-

tions are expressed only partially in terms of conditional effects, ADLIM'S are

expressed entirely using conditional effects and "simple observables".

There are many other action languages that represent sensing, such as

[14, 9, 20], but none of them have the expressiveness of ADLIM. They either

disallow sensing the value of a variable [14, 9, 20], thus restricting sensors to

returning a finite set of possible values, or they disallow the use of conditional

effects to describe sensing actions [12, 15, 11, 1, 5], which is essential for

representing information outputs that can be manipulated by other actions.

13

References

III

[21

[al

[41

[51

[61

[rl

[81

[91

Tamara Babaian and James G. Schmolze. PSIPLAN: Planning with

W-forms over partially closed worlds. Unpublished, 1999.

S. Chien, F. Fisher, E. Lo, H. Mortensen, and R. Greeley. Using artificial

intelligence planning to automate science data analysis for large image

database. In Proc. 1997 Conference on Knowledge Discovery and Data

Mining, August 1997.

O. Etzioni, K. Golden, and D. Weld. Sound and efficientclosed-world

reasoning for planning. J. ArtificialIntelligence,89(1-2):113-148, Jan-

uary 1997.

O. Etzioni and D. Weld. A softbot-based interface to the Internet. C.

ACM, 37(7):72-6, 1994.

Oren Etzioni, Steve Hanks, Daniel Weld, Denise Draper, Neal Lesh, and

Mike Williamson. An approach to planning with incomplete information.

In Proc. 3rd Int. Conf. on Principles of Knowledge Representation and

Reasoning, pages 115-125, 1992.

K. Golden and D. Weld. Representing sensing actions: The middle

ground revisited. In Proc. 5th Int. Conf. Principles of Knowledge Rep-

resentation and Reasoning, pages 174-185, 1996.

Keith Golden. Planning and Knowledge Representation for Softbots.

PhD thesis, University of Washington, 1997. Available as UW CSE

Tech Report 97-11-05.

Keith Golden. Leap before you look.:Information gathering in the PUC-

CINI planner. In Proc. 4th Intl. Conf. AI Planning Systems, 1998.

Robert P. Goldman and Mark S. Boddy. Expressive Planning And Ex-

plicitKnowledge. In Proc. 3rd Intl.Conf. AI Planning Systems, May

1996.

[10]D. Joslin and M. Pollack. Least-cost flaw repair: A plan refinement

strategy for partial-order planning. In Proc. 12th Nat. Conf. AI, July
1994.

14

[111 Craig Knoblock. Building a planner for information gathering: A report

from the trenches. In Proc. 3rd Intl. Conf. AI Planning Systems, 1996.

[121 C. Kwok and D. Weld. Planning to gather information. In Proc. 13th

Nat. Conf. AL 1996.

[131 A. L. Lansky and A. G. Philpot. AI-based planning for data analy-

sis tasks. In Proceedings of the Ninth IEEE Conference on Artificial

Intelligence for Applications (CAIA-93), 1993.

[14] Hector Levesque. What is planning in the presence of sensing? In Proc.

!3th Nat. Conf. AI, 1996.

[15] Alon Y. Levy, A. Rajaraman, and Joann J. Ordille. Query answering

algorithms for information agents. In Proc. I3th Nat. Conf. AI, 1996.

[161 J. McCarthy and P. J. Hayes. Some philosophical problems from the

standpoint of artificial intelligence. In Machine Intelligence 4, pages

463-502. Edinburgh University Press, 1969.

[17] R. Moore. A Formal Theory of Knowledge and Action. In J. Hobbs and

R. Moore, editors, Formal Theories of the Commonsense World. Ablex,

1985.

[18] E. Pednault. Toward a Mathematical Theory of Plan Synthesis. PhD

thesis, Stanford University, December 1986.

[19] E. Pednault. ADL: Exploring the middle ground between STRIPS and

the situation calculus. In Proc. 1st Int. Conf. Principles of Knowledge

Representation and Reasoning, pages 324-332, 1989.

[20] L. Pryor and G. Collins. Planning'for contingencies: A decision-based

approach. J. Artificial Intelligence Research, 1996.

[21] R. Scherl and H. Levesque. The frame problem and knowledge producing

actions. In Proc. 11th Nat. Conf. AI, pages 689-695, July 1993.

[22l Tran Cao Son and Chitta Baral. Formalizing sensing actions - a transi-

tion function based approach. Unpublished, 1998.

15

